Pentaho Data Integration
InstallationBusiness AnalyticsCToolsData CatalogData QualityLLMs
  • Overview
    • Pentaho Data Integration ..
  • Data Integration
    • Getting Started
      • Configuring PDI UI
      • KETTLE Variables
    • Concepts & Terminolgy
      • Hello World
      • Logging
      • Error Handling
    • Data Sources
      • Flat Files
        • Text
          • Text File Input
          • Text File Output
        • Excel
          • Excel Writer
        • XML
          • Read XML
        • JSON
          • Read JSON
      • Databases
        • CRUID
          • Database Connections
          • Create DB
          • Read DB
          • Update DB
          • Insert / Update DB
          • Delete DB
        • SCDs
          • SCDs
      • Object Stores
        • MinIO
      • SMB
      • Big Data
        • Hadoop
          • Apache Hadoop
    • Enrich Data
      • Merge
        • Merge Streams
        • Merge Rows (diff)
      • Joins
        • Cross Join
        • Merge Join
        • Database Join
        • XML Join
      • Lookups
        • Database Lookups
      • Scripting
        • Formula
        • Modified JavaScript Value
        • User Defined Java Class
    • Enterprise Solution
      • Jobs
        • Job - Hello World
        • Backward Chaining
        • Parallel
      • Parameters & Variables
        • Parameters
        • Variables
      • Scalability
        • Run Configurations
        • Partition
      • Monitoring & Scheduling
        • Monitoring & Scheduling
      • Logging
        • Logging
      • Dockmaker
        • BA & DI Servers
      • Metadata Injection
        • MDI
    • Plugins
      • Hierarchical Data Type
  • Use Cases
    • Streaming Data
      • MQTT
        • Mosquitto
        • HiveMQ
      • AMQP
        • RabbitMQ
      • Kafka
        • Kafka
    • Machine Learning
      • Prerequiste Tasks
      • AutoML
      • Credit Card
    • RESTful API
    • Jenkins
    • GenAI
  • Reference
    • Page 1
Powered by GitBook
On this page
  1. Use Cases

Machine Learning

Algorithms .. Credit Card Fraud

PreviousKafkaNextPrerequiste Tasks

Last updated 1 month ago

Introduction

A typical organization loses an estimated 5% of its yearly revenue to fraud.

In this lab we're going to:

  • use TPOT (AutoML) to automatically discover well-performing models.

  • apply supervised learning algorithms to detect fraudulent behavior based upon past fraud.

  • use unsupervised learning methods to discover new types of fraud activities.

Fraudulent transactions are rare compared to the norm. As such, learn to properly classify imbalanced datasets.

To listen to the video please copy and paste the website URL into your host Chrome browser, as there's no soundcard in the Lab environment.

Lab Overview